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Continuum Modeling of the Dynamics of Externally
Injection-Locked Coupled Oscillator Arrays
Ronald J. Pogorzelski, Fellow, IEEE, Paolo F. Maccarini, and Robert A. York, Member, IEEE

Abstract—Mutually injection-locked arrays of electronic oscil-
lators provide a novel means of controlling the aperture phase
of a phased-array antenna, thus achieving the advantages of
spatial power combining while retaining the ability to steer the
radiated beam. In a number of design concepts, one or more of the
oscillators are injection locked to a signal from an external master
oscillator. The behavior of such a system has been analyzed by
numerical solution of a system of nonlinear differential equations
which, due to its complexity, yields limited insight into the
relationship between the injection signals and the aperture phase.
In this paper, we develop a continuum model, which results in
a single partial differential equation for the aperture phase as a
function of time. Solution of the equation is effected by means
of the Laplace transformation and yields detailed information
concerning the dynamics of the array under the influence of the
external injection signals.

Index Terms— Beam steering, coupled oscillators, injection
locked, phased array.

I. INTRODUCTION

AMUTUALLY coupled array of electronic oscillators can
be made to oscillate in a mutually synchronized mode,

in which the relative phases of the oscillators form a well-
defined distribution useful in terms of exciting an array of
radiating elements to achieve spatial power combining, beam
formation, and steering of the radiated beam. Two methods
of achieving this have been suggested. Having demonstrated
that the ensemble of oscillators would oscillate at the average
of the free-running (tuning) frequencies of the oscillators,
Liao and York [1] showed that antisymmetrical detuning the
oscillators at the ends of a linear array (or on the perimeter of
a two-dimensional array) results in a linear phase progression
across the array, which could be exploited to steer the beam
without the use of phase shifters. Alternatively, Stephan [2]
proposed and demonstrated externally injection locking the
end oscillators with signals phase shifted with respect to
each other to achieve a similar linear phase progression
using only a single phase shifter. Such systems have, in
the past, been analyzed by numerical solution of a system
of nonlinear differential equations describing the oscillator
coupling [2]–[4]. Pogorzelski et al. [5] have analyzed the
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Fig. 1. A coupled oscillator array with the �th oscillator locked to an
externally derived signal.

scheme of Liao and York using a continuum formulation
involving a single partial differential equation for the aperture
phase. That work shows that, in steady state, the behavior
is governed by Poisson’s equation of electrostatics in which
the phase plays the role of the electrostatic potential and the
detuning plays the role of electric charge density. In this paper,
we develop a similar formalism for description of the behavior
of such arrays in the presence of externally derived injection
signals [6] and, thus, provide analytical tools appropriate to the
description of systems such as that proposed by Stephan [2].
The array to be studied is illustrated schematically in Fig. 1,

a one-dimensional array wherein the th oscillator is externally
injection locked. As mentioned above, the behavior of such
arrays of oscillators has been described in detail using a
coupled set of nonlinear differential equations [3], [4]. These
equations are derived by first describing the behavior of an
individual oscillator with injection locking in the manner of
Adler [7] and then allowing the injection signals to be provided
by the neighboring oscillators in the array. This formulation,
when applied to the array shown in Fig. 1, results in the
coupled set

(1)

for , . is the phase of
the injection signal from oscillator evaluated at oscillator ,
the coupling phase, and is the amplitude of this signal
while the interoscillator locking range is defined by

(2)

where is the quality factor of the oscillators and
is the free-running frequency of the th oscillator. is
the amplitude of the output signal of the th oscillator. A
corresponding locking range is similarly defined
for the external injection signal. The phase is the phase of
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the th oscillator, i.e.,

(3)

where is the reference frequency for defining the phase
of each oscillator. Applying this to a one-dimensional array
and following [3], we assume only nearest neighbor coupling,
zero coupling phase, and that all of the interoscillator locking
ranges are identical. This leads to

(4)

which describes a one-dimensional array with one externally
derived injection signal. If additional signals are injected at
other oscillators, one merely appends additional terms to the
right-hand side, with corresponding Kroneker delta functions
denoting the locations of the corresponding oscillators.
In this paper, we focus on development of a corresponding

continuum formulation in which the phase is described by
a continuous function passing through, at each oscillator, a
value equal to the phase of that oscillator and governed by a
single partial differential equation. By solving this equation,
we exhibit the dynamic behavior of linear coupled oscillator
arrays under external injection locking.

II. DERIVATION OF THE CONTINUUM MODEL
Following [5], assuming that the interoscillator phase dif-

ferences are small, we approximate the sine function by its
argument, thus obtaining

(5)

which, using (3), can be rewritten in the form

(6)

for . At this point, we
note that the quantity in the first pair of parentheses is merely
a finite-difference approximation for the second derivative
of the phase with respect to a spatial variable , which
corresponds to the index at integer values. Thus, (6) can now
be easily recognized as the finite-difference approximation
corresponding to the partial differential equation

(7)

for where is the phase across
the array and the unitless time is the time multiplied by
the locking range . The points correspond to
the index values . The array extends over unit

cells with an oscillator at the center of each unit cell leading
to the range of noted above.
Now, let the injection signal be represented by ,

where the time dependence of the injection signal phase is
given by and the spatial distribution of the injection
signals is given by . In the case of (7),

(8)

where we have replaced the Kronecker delta with the Dirac
delta. Here, again, for analytical convenience, as was done in
[5], the Dirac delta is used instead of a pulse one unit cell
wide. Equation (7) then becomes

(9)

Note that the driving function is the distribution of the oscilla-
tor free-running (tuning) frequencies relative to the reference
frequency, plus the injection signals. This equation forms the
basis of the remainder of the analysis presented here.

A. The Infinite-Length Array
Consider now an array for which , i.e., a linear array

of infinite length. Let all of the oscillators be tuned to the
same frequency . Now, inject an externally derived signal
of frequency , where is the unit step
function, into the oscillator at . Thus, prior to ,
all the oscillators will be in phase. Subsequent to , the
behavior of the oscillators will be given by the solution to the
partial differential equation

(10)

where has been chosen to be . We begin by Laplace
transformation with respect to . The transformed equation
takes the form

(11)

Now, by defining,

(12)

one obtains

(13)

A particular integral of this equation is

(14)

for . We postulate a solution of the homogeneous
equation of the form

(15)

The unknown constant can be determined by imposing
on the sum of the homogeneous and particular solutions the
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appropriate slope discontinuity at , i.e.,

(16)

which implies that

(17)

so that the solution of (11) with (12) becomes

(18)

This is the Laplace transform of the phase distribution over
the infinite array. The corresponding frequency distribution is
given by

(19)

Defining

(20)

the inverse Laplace transform of (19) is

(21)

For each fixed value of , this function begins at a value of
when and evolves smoothly and monotonically

toward a final value of zero at infinite . This transition from
the reference frequency to the injection frequency occurs first
for values near zero and later for oscillators more distant
from the center of the array. This is, of course, to be expected
since the effect of the sudden switch in injection signal
frequency would be expected to diffuse from the injection
point outward in both directions along the array. The diffusion
rate is governed by the ratio of to , i.e., the interoscillator
locking range. The phase behavior of the array can be obtained
as the time integral of this function. Interestingly, however, the
resulting function approaches infinity for infinite , indicating
that the phase never reaches a steady-state value, as does
the frequency. Rather, it continues to evolve for all time.
Specifically, for late times, the frequency differs from the
injection frequency as one over the square root of the time,
which implies that the phase, which is its time integral, differs
from the injection phase as the square root of time which, of
course, approaches infinity for infinite time.
Fig. 2 shows the result of a numerical evaluation of (21)

with . This graph indicates that the center oscillator
approaches the injection frequency most rapidly and the others

Fig. 2. Frequencies of the oscillators in an infinite linear array under external
injection locking of one oscillator (at � � �) with a step frequency change.

Fig. 3. Phases of the oscillators of Fig. 2.

follow at later times as would be expected. Integrating this fre-
quency function with respect to time yields the phase function,
shown in Fig. 3, where the definition of suppresses the linear
time dependence arising from the frequency transition.

B. The Finite-Length Array
Consider now an array extending from to in , thus

having oscillators. To derive the dynamic behavior of
the phase in such an array with the element at exter-
nally injection locked, we must effectively add homogeneous
solutions of (11) and (13) to the particular integral (18) so
as to simultaneously satisfy both the boundary conditions at
the ends of the array and the slope discontinuity condition
at . It was shown in [5] that the boundary conditions
at the array ends and are the
classical Neumann conditions independent of time. Following
the prescription suggested above, we postulate a solution of
the form

(22)

One can then determine the unknown constants , , and
by imposing Neumann boundary conditions at the array

ends together with the appropriate slope discontinuity at .
(Note that will not be the same as derived for the infinite

(23)
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array.) The resulting solution, using (12), is shown in (23), at
the bottom of the previous page.
Despite the presence of , there is no branch cut in the
plane because is an even function of . Thus,

the inverse Laplace transform can be obtained as the sum
of the residues at the poles, all of which are located on
the negative real axis. Of course, some care must be taken
concerning the double pole at the origin, which gives rise to a
term linear in time. This term arises because of the transition
in the ensemble frequency as it follows the injection signal
frequency, resulting in a steady-state phase variation, which is
linear in time. Aside from the double pole at the origin, the
pole closest to the origin determines the dominant transient
response time constant for the array. The location of this pole
can be estimated by approximate solution of the transcendental
equation obtained by setting the denominator of (23) equal to
zero. The result is

(24)

That is, the response time is roughly proportional to the square
of the number of elements in the array between the injection
point and the farthest end.
The frequency is again obtained by multiplication by , i.e.,

as shown in (25), at the bottom of this page. As in the infinite
array case, the inverse transform of this function approaches
zero at infinite time. However, unlike the infinite case, the
approach is exponential instead of . Correspondingly,
aside from the linear time dependence, the phase approaches
a temporal constant at infinite time, but this temporal constant
depends on parabolically. This can be seen by invoking the
final value theorem and noting that

(26)

Note that the discontinuity in phase slope across the injection
point is . By integrating (9) across the injection
point, one finds that this discontinuity must be equal to times
the phase difference between the injection signal and the output
of the injected oscillator, i.e., the one at . This phase
difference must be small for the present linearized theory to
apply. In fact, recalling that this phase difference replaces the
sine of this phase difference in the original nonlinear theory,
we find that must be less than to maintain phase
lock. Therefore, we arrive at the requirement that

(27)

to maintain phase lock in steady state. That is, as can been
noted using the nonlinear discrete model of York [3], the

Fig. 4. Phases of the oscillators in a linear array of 21 oscillators in which
oscillator 5 is injection locked to an externally derived signal stepped in
frequency at time zero.

Fig. 5. Oscillator phases for the array of Fig. 4 computed via the discrete
model.

Fig. 6. Frequencies of the oscillators of Fig. 8.

frequency shift, which can be induced by a step change in
the frequency injected at one oscillator of the array is limited,
not just to the locking range, but to the locking range divided
by the number of oscillators in the array. Fig. 4 shows the
calculated phase variation, suppressing the linear dependence,
for an example in which , , and is unity.
According to (27), must be less than 1/21. Here, we choose
it to be 0.04. As a validation, the same case was computed
via Runge–Kutta solution [8] of the nonlinear discrete model
equations and the result, shown in Fig. 5, is indistinguishable
from that of the continuum formulation. Fig. 6 shows the
corresponding frequency variation.

(25)



POGORZELSKI et al.: MODELING OF DYNAMICS OF COUPLED OSCILLATOR ARRAYS 475

If the injection point is located at the center of the array,
i.e., if , then (23) and (25) simplify to

(28)

and

(29)

The behavior obtained if all of the oscillators are externally
injection locked to the same signal can be determined by
returning to (9) and setting . This results in

(30)

Laplace transformation leads to

(31)

where is again given by (12). This equation has a solution
of the form

(32)

Applying the Neumann boundary conditions at the ends of the
array, we find that and are both zero so that

(33)

and

(34)

Upon differentiation with respect to time, we find that

(35)

which indicates that the frequency of all the oscillators simul-
taneously evolves from the initial value to the final value

with a time constant

(36)

where is the locking range of the externally injected
oscillator in the array. That is, the time constant is propor-

tional to the injection signal locking range rather than the
interoscillator locking range. Moreover, unlike in (24), there
is no dependence on the number of oscillators in the array.
Finally, we emphasize that the continuous function

only has meaning at integer values of where it takes on the
value of the phase of the oscillator of index . The above
development was carried out for an odd number of oscillators.
If the number of oscillators is even, the theory as developed
can be applied by setting where is the number
of oscillators. In that case, however, the solution only
has meaning when is a half-integer where it takes on the
value of the phase of the oscillator indexed by that value of .

III. THE DYNAMICS OF BEAM STEERING

A. Step Phase Shift
Suppose now that two of the oscillators in the array are

injection locked to externally derived signals of the same
frequency, but differing phase. Such an arrangement was
proposed by Stephan as a means of steering the radiated beam
[2]. Equation (9) then becomes

(37)

where the ’s measure the strengths of the two injection
signals, the ’s are their locations, and the ’s are their phases.
Laplace transformation yields

(38)

A solution of this equation is now postulated in the form

(39)

and the unknown constants are determined by application of
the Neumann boundary conditions at the ends of the array and
the slope discontinuities at the two injection points. That is,
letting , we have

(40)
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Solving these equations simultaneously and substituting into
(39) yields the solution

(41)

where

(42)

The inverse transform can again be found using residue
calculus. Here, again, the poles all lie on the negative real
axis.
Using the final value theorem, we find that the steady-state

phase distribution is as shown in (43), at the bottom of this
page, which, of course, is just the residue at the pole at .
Note that there is no constraint corresponding to (27) here
because the injection signals have the same frequency as the
array; they are merely shifted in phase. The phase shift must
only be confined to less than 90 to maintain lock. This would
appear, at first glance, to be a serious drawback associated with
this beam-steering technique. However, as will be seen, this

Fig. 7. Phases of the oscillators in a linear array of 21 oscillators in which
the end oscillators are injection locked to externally derived signals out of
phase by �60�.

limit only applies if the phase is changed stepwise in time. If a
gradual phase shift is introduced, the final value is theoretically
limited only to 90 times the number of oscillators in the array
less one.
As an example of beam steering, we choose a case where a

21-oscillator array is injection locked at the ends with signals
having equal amplitude and antisymmetric phase. That is,

(44)

The resulting dynamic behavior of the oscillator phases is
shown in Fig. 7. When this phase distribution is applied to
a 21-element linear array of radiating elements separated by a
half-wavelength, the resulting steering angle is only about 0.6
beamwidths. Clearly, greater phase shift is needed. This will
be addressed below.

B. Gradual Phase Shift
If wide angle scanning is desired, large phase shifts must

be produced. This requires a gradual shift of the phase of
the injected signals if lock is to be maintained. Such a case
was presented by Stephan [2] and the present theory can
be used to reproduce his results as follows. The solution
represented by (41) and (42) corresponds to a step change
in phase of the injection signals. By convolving this step
function with a Gaussian, the transition can be made gradual.
The corresponding solution for the phase can be obtained by
convolving the step solution with the same Gaussian. Since,
in the time domain, the solution is expressed as a sum of
exponentials, one need only convolve each exponential with
the Gaussian. This convolution can be written as multiplication
by an expression in terms of complementary error functions.

(43)
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Fig. 8. Phases of the oscillators in a linear array of five oscillators, in which
the end oscillators are injection locked to externally derived signals gradually
shifted out of phase to a maximum of 270�.

Let the Gaussian be written in the form

(45)

The convolution of this function with an exponential can then
be written in the form

(46)

where

(47)

In terms of the complementary error function defined as

(48)

this expression can be written in the form

(49)

Thus, to obtain the solution for the gradual phase change, one
needs only multiply each of the exponentials in the residue
series by the above function (which involves the pole location,

).
Stephan selected a five-element array and plotted the phase

evolution of each oscillator as function of time when the end
oscillators were injection locked to two externally derived
signals 270 out of phase with each other. These signals can
be simulated by choosing the Gaussian parameters to be

(50)

This results in the phase evolution shown in Fig. 8, which is
to be compared with [2, Fig. 12(a)].
Generalizing this to a 21-element array, increasing the

phase difference between the injection signals to 1200 , and
adjusting the Gaussian parameter to 0.01 yields the phase
distribution shown in Fig. 9. Note that, with this selection of

Fig. 9. Phases of the oscillators in a linear array of 21 oscillators in which
the end oscillators are injection locked to externally derived signals gradually
shifted out of phase to a maximum of 1200�.

Fig. 10. Far-zone radiation pattern corresponding to the array of Fig. 9.

parameters, the phase difference between adjacent oscillators
never exceeds 90 , thus, lock is maintained throughout the
transient period. When the outputs of these oscillators are
applied to a linear array of 21 radiating elements separated by
a half-wavelength, the resulting far field is shown in Fig. 10,
which illustrates the utility of the Stephan scheme in scanning
the beam.

IV. CONCLUDING REMARKS
We have developed a continuum model describing the

dynamics of arrays of coupled oscillators in which one or
more of the oscillators is injection locked to an externally
derived signal. This formalism has been used to derive several
behavioral characteristics of such arrays. We have noted that,
according to this theory, the frequency shift which can be
induced by a step change in the frequency injected at one
oscillator of the array is limited, not just to the locking range,
but to the locking range divided by the number of oscillators in
the array. This is consistent with the results of a full nonlinear
discrete model of the array [3]. We have further shown that
the response time of the array is roughly proportional to the
square of the number of oscillators, which can severely limit
the bandwidth of the array. This, however, can be mitigated
by injection locking several of the oscillators to the same
externally derived signal. In fact, as might be expected, the
theory shows that if all of the oscillators are injection locked,
the ensemble has the response time of a single oscillator alone.
Finally, the theory was applied to the beam-steering scheme
proposed and experimentally demonstrated by Stephan, in
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which the end oscillators of a linear array are injection locked
to signals differing in phase. Our results confirm the published
results of Stephan [2].
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